3.2931 \(\int \frac{1}{(1-2 x)^{3/2} \sqrt{2+3 x} (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=129 \[ -\frac{4}{77} \sqrt{\frac{3}{11}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )-\frac{370 \sqrt{1-2 x} \sqrt{3 x+2}}{847 \sqrt{5 x+3}}+\frac{4 \sqrt{3 x+2}}{77 \sqrt{1-2 x} \sqrt{5 x+3}}+\frac{74}{77} \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(4*Sqrt[2 + 3*x])/(77*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]) - (370*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(847*Sqrt[3 + 5*x]) + (
74*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/77 - (4*Sqrt[3/11]*EllipticF[ArcSin[Sqrt[3/7]
*Sqrt[1 - 2*x]], 35/33])/77

________________________________________________________________________________________

Rubi [A]  time = 0.0383129, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {104, 152, 158, 113, 119} \[ -\frac{370 \sqrt{1-2 x} \sqrt{3 x+2}}{847 \sqrt{5 x+3}}+\frac{4 \sqrt{3 x+2}}{77 \sqrt{1-2 x} \sqrt{5 x+3}}-\frac{4}{77} \sqrt{\frac{3}{11}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{74}{77} \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - 2*x)^(3/2)*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(4*Sqrt[2 + 3*x])/(77*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]) - (370*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(847*Sqrt[3 + 5*x]) + (
74*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/77 - (4*Sqrt[3/11]*EllipticF[ArcSin[Sqrt[3/7]
*Sqrt[1 - 2*x]], 35/33])/77

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegersQ[2*m, 2*n, 2*p]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{1}{(1-2 x)^{3/2} \sqrt{2+3 x} (3+5 x)^{3/2}} \, dx &=\frac{4 \sqrt{2+3 x}}{77 \sqrt{1-2 x} \sqrt{3+5 x}}-\frac{2}{77} \int \frac{-\frac{55}{2}-15 x}{\sqrt{1-2 x} \sqrt{2+3 x} (3+5 x)^{3/2}} \, dx\\ &=\frac{4 \sqrt{2+3 x}}{77 \sqrt{1-2 x} \sqrt{3+5 x}}-\frac{370 \sqrt{1-2 x} \sqrt{2+3 x}}{847 \sqrt{3+5 x}}+\frac{4}{847} \int \frac{-150-\frac{555 x}{2}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{4 \sqrt{2+3 x}}{77 \sqrt{1-2 x} \sqrt{3+5 x}}-\frac{370 \sqrt{1-2 x} \sqrt{2+3 x}}{847 \sqrt{3+5 x}}+\frac{6}{77} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx-\frac{222}{847} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{4 \sqrt{2+3 x}}{77 \sqrt{1-2 x} \sqrt{3+5 x}}-\frac{370 \sqrt{1-2 x} \sqrt{2+3 x}}{847 \sqrt{3+5 x}}+\frac{74}{77} \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{4}{77} \sqrt{\frac{3}{11}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.125425, size = 122, normalized size = 0.95 \[ \frac{140 \sqrt{2-4 x} (5 x+3) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+2 \sqrt{3 x+2} \sqrt{5 x+3} (370 x-163)-74 \sqrt{2-4 x} (5 x+3) E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )}{847 \sqrt{1-2 x} (5 x+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - 2*x)^(3/2)*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(2*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-163 + 370*x) - 74*Sqrt[2 - 4*x]*(3 + 5*x)*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3
+ 5*x]], -33/2] + 140*Sqrt[2 - 4*x]*(3 + 5*x)*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(847*Sqrt[1
- 2*x]*(3 + 5*x))

________________________________________________________________________________________

Maple [C]  time = 0.02, size = 135, normalized size = 1.1 \begin{align*} -{\frac{2}{25410\,{x}^{3}+19481\,{x}^{2}-5929\,x-5082}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 70\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -37\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +1110\,{x}^{2}+251\,x-326 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-2*x)^(3/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x)

[Out]

-2/847*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(70*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*Ellipti
cF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-37*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(
66+110*x)^(1/2),1/2*I*66^(1/2))+1110*x^2+251*x-326)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(3/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((5*x + 3)^(3/2)*sqrt(3*x + 2)*(-2*x + 1)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{300 \, x^{5} + 260 \, x^{4} - 137 \, x^{3} - 136 \, x^{2} + 15 \, x + 18}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(3/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(300*x^5 + 260*x^4 - 137*x^3 - 136*x^2 + 15*x + 18), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)**(3/2)/(3+5*x)**(3/2)/(2+3*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(3/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((5*x + 3)^(3/2)*sqrt(3*x + 2)*(-2*x + 1)^(3/2)), x)